Direct gap junction communication between malignant glioma cells and astrocytes.

نویسندگان

  • W Zhang
  • W T Couldwell
  • M F Simard
  • H Song
  • J H Lin
  • M Nedergaard
چکیده

Gap junctions are intercellular channels that connect the interiors of coupled cells. We sought to determine the extent to which malignant glioma cells form gap junction channels with astrocytes from either adult human brain or rat forebrain. The astrocytic gap junction protein, connexin 43 (Cx43), was identified in immunoreactive plaques at areas of cell-to-cell contact between cocultured glioma cells and astrocytes. These gap junction plaques were composed of functional channels, because extensive dye coupling was evident between the glioma cells and astrocytes from both human and rat brain. Calcium signaling was also readily transmitted from glioma cells to astrocytes and vice versa. In live rat brain, injection of glioma cells prelabeled with the gap junction tracer, dicarboxy-dichlorofluorescein, revealed extensive dye transfer to host cells, demonstrating that malignant glioma cells directly couple with normal brain cells. These observations suggest that intercellular communication via gap junctions may play a role in regulating cellular interactions during tumor invasion. In fact, the presence of gap junctions between astrocytes and glioma cells was sufficient to induce a transformation of astrocytic phenotype. Astrocytes cocultured with C6 glioma cells overexpressing Cx43 were significantly smaller and expressed a lower level of glial fibrillary acidic protein than astrocytes cocultured with otherwise identical mock-transfected, gap junction-deficient C6 cells. Thus, direct cellular coupling with glioma cells result in a phenotypic transformation of astrocytes that may contribute to the susceptibility of surrounding tissue to glioma invasion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gap junctions modulate glioma invasion by direct transfer of microRNA

The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functi...

متن کامل

Connexin43 in Gap Junctional Intercellular Communication in Astrocytes and Glioma Cells

Gap junctional intercellular communication built by hemichannels on cell membrane is a functional syncytium which allows rapid transfer of ions and molecules between cells. Recent findings have shown that gap junction proteins, and specifically Cx43, can play a significant role in cell migration, tissue formation and organ development, impacting adhesion and cytoskeletal rearrangements. Some li...

متن کامل

Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells.

A hallmark of astrocytic tumors is their infiltrative nature. Although their aggressive and typically widespread dispersal in the adult brain differs fundamentally from that of other brain tumors, little is known about their cellular basis. Astrocytic tumors express the gap junction protein connexin 43 (Cx43), and we show here that Cx43 expression induced the morphological transformation of gli...

متن کامل

A model for glioma cell migration on collagen and astrocytes.

We present a model for the migration of glioma cells on substrates of collagen and astrocytes. The model is based on a cellular automaton where the various dynamical effects are introduced through adequate evolution rules. Using our model, we investigate the role of homotype and heterotype gap junction communication and show that it is possible to reproduce the corresponding experimental migrat...

متن کامل

Intracerebroventricular Injection of Lipopolysaccharide Increases Gene Expression of Connexin32 Gap Junction in Rat Hippocampus

Introduction: Gap junctions are intercellular membrane channels that provide direct cytoplasmic continuity between adjacent cells. This communication can be affected by changes in expression of gap junctional subunits called Connexins (Cx). Changes in the expression and function of connexins are associated with number of brain neurodegenerative diseases. Neuroinflammation is a hallmark of vario...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 59 8  شماره 

صفحات  -

تاریخ انتشار 1999